Computer Network Tutorial

Introduction of Computer Network Types of Computer Network Network Topology Computer Networking Architecture Transmission Modes (Data Flow) Basic Networking Devices Integrate Services Digital Network (ISDN)

Model

OSI Model TCP/IP Model

Physical Layer

Digital Transmission Analog Transmission Transmission Media Switching

Data Link Layer

Error detection and Error correction Data Link Control Multiple Access Aloha

Network Layer

Network Layer - Logical Address Address Mapping Unicast Routing Protocol

Transport Layer

Process to Process Delivery User Datagram Protocol Transmission Control Protocol Stream Control Transmission Protocol Session Layer and Presentation Layer

Application Layer

Domain Name System Application Protocol E-mail Cryptography

Misc

Classes of Routing Protocols Classification of Routing Algorithms Controlled Access Protocols in Computer Networks Differences between IPv4 and IPv6 Fixed and Flooding Routing Algorithms Advantages and Disadvantages of Fibre Optics Cable APIPA Difference between Active and Passive FTP Fiber Optics and its Types Method of Joining and Fusion of Fiber Optic Cable Define Framing in Computer Network Disadvantages of Computer Network Mesh Topology Diagram in Computer Network Ring Topology in Computer Network Star Topology in Computer Networks 4G Mobile Communication Technology Advantages and Disadvantages of LAN Advantages and Disadvantages of MAN Advantages and Disadvantages of WAN Application Layer in OSI Model Cyclic Redundancy Check Example Data link layer in OSI model Difference between Transport and Network Layer Hamming Code Example Network Layer in OSI Model Session Layer in OSI Model Transport Layer in OSI Model Two Port Network in Computer Networks Uses of Computer Networks What is Computer Network What is Framing in a Computer Network Advantages and Disadvantages of Bus Topology Difference between Star Topology and Bus Topology Subnetting in Computer Network Subnetting Questions and Answers What is Bus Topology What is Network Topology and Types in Computer Networks Access Control in Networking Basic Characteristics of Computer Network Benefits of SOCKS5 Proxy in Computer Networks Computer Network viva Questions Difference between BOOTP and RARP Difference Between Network Topologies and Network Protocols Difference between NFC and RFID Difference Between Point-to-Point Link and star Topology Network Differences Between MSS and MTU Differences Between Trunk Port and Access Port Different Modes of Communication in Computer Networks MIME Protocol in Computer Networks Modes of Communication in Computer Networks Network Attack in Computer Network Port Address in Networking Simplest Protocol in Computer Network Sliding Window Protocol in Computer Network Stop And Wait Protocol in Computer Networks TCP 3-Way Handshake Process in Computer Networks What is a Proxy Server What is APPN What is ICMP Protocol What is Point-to-Point Protocol What is Port Address in Networking What is the HDLC Protocol What is VRRP Protocol Difference Between Analog and Digital Signals Difference Between Hub and Repeater Difference between Repeater and Switch Difference Between Transparent Bridge and Source Routing Bridge Source Routing Bridge in Computer Networks Transparent Bridge in Computer Networks Transport Protocol in Computer Networks Types of CSMA in Computer Networks What is Wired and Wireless Networking Network Security in Computer Network Disadvantages of Extranet Difference Between TELNET and FTP Define Protocol in Computer Networks Guided Transmission Media in Computer Network What is a Gateway in a Computer Network IGMP in Computer Networks LAN Protocols in Computer Networks MAN Meaning in Computer Modulation Techniques in Computer Networks Switching in DCN TCP/IP Applications What is IGMP? What is Modem in Networking What is Non-Persistent CSMA Difference between Cell Splitting and Cell Sectoring Forouzen Computer Network Open Loop and Closed Loop Congestion Control Types of Cluster Computing WAP-Wireless Access Point What are the elements of the Transport Protocol Difference between Gateway and Switch Flow Control in Data Link Layer Body Area Network Flooding in Computer Network Token Ring in Computer Networks VoIP in Computer Networks What is Infrared Transmission Congestion Control Techniques Forward Error Correction (FEC) Switching Techniques What is Telnet in Computer Network What are the Types of IPv4 Addresses IEEE 802.6 (DQDB) IEEE 802.15.4 Technology What is HDLC (High-level Data Link Control)? What is SMS Hubbing in Telecom? Circuit Switching in Computer Networks Communication Satellites in Computer Networks Features of HTTP Protocol IMAP4 (Internet Message Access Protocol) Internet Services How to Set up a Wireless Router Internetwork Routing in Computer Networks Distributed Computing System Features of GSM The 802.11 MAC Sublayer Protocol What is IEEE 802.3? What are Hubs and Switches in Computer Networks? What is Modem in a Computer Network? What is multicasting in Computer Networks? GSM -The Mobile Station What is Network Server? Slotted Aloha in Computer Network What is Ethernet in Computer Networks What is Arpanet? Radio Access Network (RAN) TCP 3-Way Handshake Process PING SWEEP (ICMP SWEEP) Print Server Private IP Address Security Services in Computer Networks Protocol Data Unit (PDU) CSMA with Collision Avoidance (CSMA/CA) What is Gateway in Computer Network? Advantages of Networking Data Link Layer Design Issues DHCP in Computer Networks Internet Security Association and Key Management Protocol (ISAKMP) What is Switch Hub? Telnet Full form in Networking Multimedia Systems Quality of Service in Computer Networks What is Carrier Sense Multiple Access (CSMA)? What is Circuit Switching What is Duplex Network? What is Web Protocol Network LAN Technologies Classes in Computer Network Low-Density Parity Check (LDPC) Wireless Internet Service Providers(Wisps) What is Handshaking? Cache Server What Is WSN Network? Check Sum Error Detection Linear Bus Topology Functions of the Transport Layer Infrared Transmission in Computer Networks Digital Signal in Computer Network Digital Data Transmission in Computer Networks Define Checksum with Example Computer Network Security Requirements Brust Errors in Computer Network Back Side Bus (BSB) 2-Dimension Parity Check in Computer Network Router and Brouter Microwave Transmission in Computer Networks Magnetic Media in Computer Network A One-Bit Sliding Window Protocol CDMA-Near-Far Problem Reference Models in Computer Networks Uni-cast, Broadcast, and Multicast in Computer Networks Uses Of Bridges in Computer Networks What are Gateways in Computer Network? How to Set Up a Home Network – A 7-Step Guide GSM in Computer Networks Multicast Routing Protocols in Computer Networks Network Components Types of Ethernet in Computer Networks BGP vs.EIGRP-What's the difference? Green Cloud Computing and its Strategies Packet Switching Router in Computer Network Advantages and Disadvantages of Routers ATM Network Automatic Repeat ReQuest (ARQ) Static Routing Algorithms in Computer Network TDMA – Technology Data Link Layer services provided to the Network Layer Transmission Impairments in Computer Networks Types of Modems What are Elementary Data Link Layer Protocols What is an Ad-hoc Network? What is the IEEE 802.11 Wireless LAN Standards? What Is Tunneling in Computer Networks? What is Twisted Pair Cable Advantages of Unguided Media Ethernet Topology in Computer Network Optical Fiber Modes and Configurations Optical Sources in Optical Fiber Communication 4 Layers of TCP/IP Hierarchical Routing Algorithm in Computer Networks Meaning of Data Communication Metropolitan Area Network Responsibilities of Transport Layer The Functions of Hub in Networking Tree Topology in Computer Network Types of Connections in Computer Network Authentication in Computer Network Buffering in Computer Networks MAC Protocol and its Classification Difference between Circuit Switching and Packet Switching Difference between Session and Cookies Broadcasting in Computer Networks CDMA in Computer Networks CDMA-Technology Components of Computer Network CRC in Data Communication CSMA-CA Protocol in Computer Network Difference between LAN and VLAN DIFFERENCE BETWEEN PHYSICAL AND LOGICAL TOPOLOGY Difference between TDM and FDM Differences Between URL and IP Address Differentiate between Synchronous TDM and Asynchronous TDM in Computer Network Diffеrеntiate Bеtwееn Datagram Approach and Virtual Circuit in Computer Network FDDI in Computer Network Functions of Bridge IEEE 802.11 in Computer Networks Internetworking in Computer Networks MAC in Data Link Layer Mac Sub Layer in Computer Networks MAN Meaning in Computer Radio Wave Transmission Single Sign-On (SSO) Token Passing in Computer Network Types of Data Transmission Types of Transmission Media in Computer Networks Advantagеs and Disadvantagеs of Li-Fi Benefits of Client Server Computing Bus and its Types Characteristics of Analog Signals Characteristics of NOS Choke Packet in Congestion Control Congestion Control Policy CSMA/CA in Computer Network Data Communication and Transmission Techniques Data Compression in Computer Networks Diffеrеncе bеtwееn SSH and Tеlnеt Diffеrеncе bеtwееn Static IP Addrеss and Dynamic IP Addrеssa Fiber Distributed Data Interface Network Time Protocol(NTP) Routing in Adhoc Networks Working of DNS Time Division Multiplexing (TDM) Types of Packet Switching Types of Protocols Types of Transmission Technology Use of Bluetooth in Computer Networks What is BBS? What is Code Correction? IEEE 802.11 Wireless LAN What is Stateless Protocol? Advantages of Networking in Computers DHCP Protocol in Computer Networks Difference between UTP and STP Cable Explain FTP in Computer Network Explain Hierarchical Model Explain HTTP in Computer Network Explain Nested Structure with Example Open Systems Interconnection Model Parallel Database System SMTP in Computer Network Space Division Switching Transmission Control Protocol (TCP) Types of IP Address Types of Routing in Computer Networks What is Duplex Transmission Data Link Layer Protocols Network Layer Protocols Session Layer Protocols

Linear Bus Topology

Linear Bus Topology

Computer networks frequently use a network topology called linear bus topology. It is one of the most accessible and most straightforward network architectures. All network devices in this architecture are linked by a single, central communication line known as the "bus" or "backbone." Each device on the network can receive and send data through this common communication channel as the bus carries data in both directions.

The Linear Bus Topology's main features are as follows:

  1. Main Cable (Bus): The main cable connects all the devices linearly and acts as the network's backbone. It is typically an optical fiber, twisted-pair cable, or coaxial cable.
  2. Termination: The main cable's two ends must be joined appropriately to prevent signal reflections that could lead to data collisions and network outages. Terminators, resistors that match the cable's impedance, are often used to complete the termination process.
  3. Drop Lines/Droppers: Drop lines, often referred to as droppers or stubs, connect networked devices to the main cable. These drop lines, which are shorter cables with main bus taps, are used. Each device has a dedicated drop line, allowing for connection and disconnection without disrupting the network as a whole.
  4. Data Flow: Any device's transmitted data packets move back and forth along the primary wire. However, only the device that is supposed to receive the data does so; all other devices disregard it.
  5. Performance with Fewer Devices: When there are few devices connected to the network, the linear bus topology performs well. The bus may get congested as additional devices are added, increasing the likelihood of collisions and lowering network performance. As a result, it is not advised for extensive enterprise networks with lots of devices.
  6. Network Maintenance: The linear bus topology is straightforward to set up, but it might be more challenging to maintain as the network expands. Termination must be carefully considered while adding or deleting devices, and if the main cable is damaged, it cannot be easy to troubleshoot and fix.

Advantages of Linear Bus Topology

  • Simplicity: Simple setup and minimum cabling requirements make it a cost-effective alternative for smaller networks.
  • Scalability: The architecture is relatively scalable because additional devices may be added to the network by simply connecting them to the primary connection.
  • Faults are Simple to Identify: Because the bus is linear, isolating and finding faults is more straightforward if a component or part of the main cable fails.
  • No Central Point of Failure: No single point of failure exists in a linear bus topology, in contrast to other topologies like the star. The network may not always be affected when one device fails.

Disadvantages of Linear Bus Topology

  • Limited Cable Length: The network's performance can be impacted by the entire length of the main cable and the number of connected devices. There may be too many devices or a long cable, which can cause signal degradation and data loss.
  • Network Congestion: Data collisions and decreased network efficiency can result from congestion because all devices use the same communication channel. Heavy network traffic or several simultaneous transmissions can also cause this.
  • Dependence on the Main Cable: The entire network may become inoperable until the problem is remedied if the main cable malfunctions or is broken.
  • Impacts on performance: As more devices are connected to the network, the total bandwidth available to each device drops, potentially resulting in slower data transmission rates.
  • Signal Degradation and Reflection: Each device connected to the main cable results in signal degradation and reflection, which weakens the signals as they move over the bus. Data loss, slower transmission rates, and higher mistake rates may arise from this. Additionally, improper termination of the leading cable's ends may result in signal reflections, which can worsen signal quality and cause data collisions.
  • Network Congestion: Network congestion occurs because every device in a linear bus design uses the same communication channel. The chance of collisions grows as device density or data traffic increases. Collisions result in data retransmissions, deleting the network's overall efficiency and slowing data transmission rates.